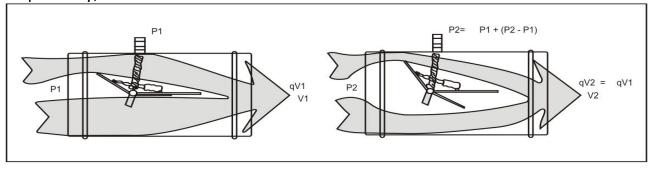
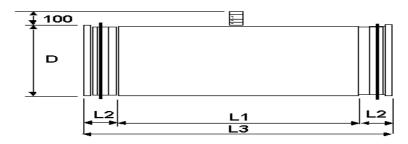


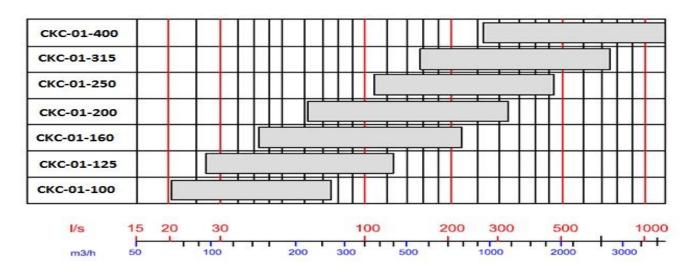
CONSTANT VOLUME UNITS - CAV UNITS - CYLINDRICAL- CAV-02

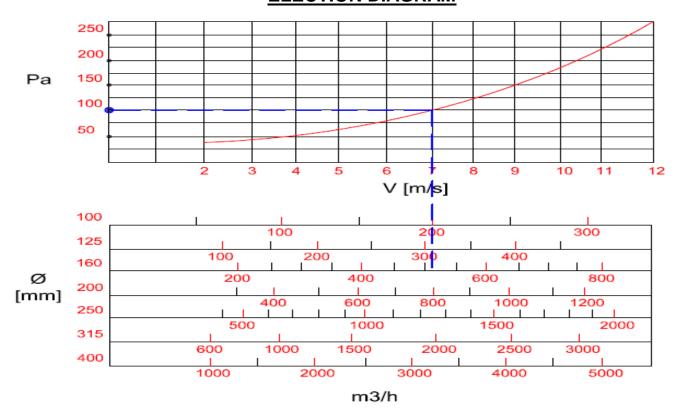


USAGE AREA AND FEATURES :It offers easy and economical solutions in systems where constant air flow will be used. Easily adjusted Cav dampers mechanically keep the air flow to the desired value by means of a spring. Thanks to its mechanism, it fixes its position against the changing air flow at the desired flow. In case of changing channel pressure, it prevents the change of flow by increasing or decreasing the pressure loss.

BENEFITS


- Adjusts constant flow rate in air velocity changes.
- It can be used in suction and blowing lines.
- It is economical compared to motorized dampers.
- Cav dampers, 50 Pa-250 Pa in the range of 2m / s and 10m / s. Between.
- Air flow adjustment can be made on site with a 2mm allen key.
- Has an accuracy of ± 10%.
- Optionally, it can be manufactured with insulated and silencer.


Material: Cav Dampers are manufactured from 1mm galvanized plate. Air fins on the body are made of aluminum plate. Air adjustment scale is made of transparent material, air adjustment cover is made by plastic injection printing method. The shock absorber in the body is designed to prevent vibration in the fins. Spring mechanisms are specially calibrated. There is coating on the damper to prevent rust. It is produced with 2 wings as the dimensions grow. Damper duct flanges are manufactured as 24mm.


TECHNICAL MEASUREMENT:

CYLINDRICAL CAV QUICK SELECTION TABLE

ELECTION DIAGRAM

SOUND LEVEL

	l						∆Pt	= 12	5 Pa							∆Pt	= 25	0 Pa	§ .		
	Vk	١	Lw [dB/Oct] fm (Hz)									Lw [dB/Oct]								[dB(A)]	
SIZE		19 1 3										89	fm (Hz)								
	(m/s)	(m3/h)	[l/s]	63	125	250	200	1000	2000	4000	8000	LWA [dB	63	125	250	200	1000	2000	4000	8000	LWA
97.95A2	3	81	23	35	42	39	37	36	35	34	35	41	39	45	45	43	41	40	39	33	48
100	6	163	45	43	56	51	47	42	38	37	36	47	45	59	56	52	48	46	45	38	55
	9	244	68	46	56	52	46	41	38	26	36	50	49	64	60	58	52	49	47	40	57
	3	128	36	41	43	40	38	37	36	35	37	42	46	46	46	44	42	41	40	40	49
125	6	257	71	52	60	55	52	46	42	41	41	51	55	63	60	56	52	50	49	48	59
	9	385	107	54	59	55	49	44	41	39	40	53	58	67	63	61	55	52	50	49	60
	3	212	59	48	49	46	44	43	42	41	42	50	53	52	52	50	48	47	46	43	55
160	6	423	118	55	62	57	53	48	44	43	42	53	58	65	62	58	54	52	51	46	61
	9	635	176	56	60	56	50	45	42	40	40	54	60	68	64	62	56	53	51	46	61
2457,99024	3	332	92	52	49	46	44	43	42	41	40	48	57	52	52	50	48	47	46	47	55
200	6	665	185	61	64	59	55	50	46	45	43	55	64	67	64	60	56	54	53	53	63
	9	997	277	63	63	59	53	48	45	43	42	57	67	71	67	55	69	56	54	54	64

SIZE				∆Pt = 125 Pa									∆Pt = 250 Pa								
	Vk	١	Lw [dB/Oct]									Lw [dB/Oct]								A 11	
		724	fm (Hz)								B (fm (Hz)								(AB(A)	
	(m/s)	(m3/h)	[l/s]	63	125	250	500	1000	2000	4000	8000	LWA [d	63	125	250	500	1000	2000	4000	8000	L W A Id
250	3	521	145	57	52	49	47	46	45	44	43	51	61	55	55	53	51	50	49	49	58
	6	1043	290	64	65	60	56	51	47	46	43	56	66	68	55	61	57	55	54	53	64
	9	1564	434	66	54	60	54	49	46	44	42	58	69	72	68	66	60	57	55	54	65
315	3	831	231	57	52	49	47	46	45	45	41	51	59	49	44	46	47	49	42	47	58
	6	1661	461	68	69	64	60	55	51	51	46	60	68	66	58	58	57	58	51	55	68
	9	2492	692	68	66	62	56	51	48	47	43	50	69	68	65	62	59	57	55	54	67
355	3	1056	293	57	52	49	47	46	45	44	42	51	62	55	55	53	51	50	49	49	58
	6	2113	587	67	68	63	59	54	50	49	44	59	60	61	57	54	60	58	57	56	67
	9	3169	880	70	68	64	58	53	49	48	44	62	74	76	72	70	64	61	59	58	69
400	3	1343	373	59	54	51	49	48	47	46	44	53	66	57	57	55	53	52	51	51	60
	6	2686	746	68	69	64	60	55	51	50	46	60	73	72	69	65	61	59	58	57	68
	9	4029	1119	74	72	68	62	57	54	52	49	66	80	80	76	74	68	65	63	62	73